e iriier it iviuit-
GEAH?eading Bugs: Find
and Squash Races,
Deadlocks, and

Memory B
i g il

Munara Tolubaeva

Software Technical Consulting Engineer

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when

combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Here is What Will Be Covered

« Overview
 Memory/Thread analysis
« Deep dive into debugger integrations

* Inspector 2017 Features

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. Intel Confidential
*Other names and brands may be claimed as the property of others.

Analysis Tools for Diagnosis

Intel® Parallel Studio XE

Intel® Trace Analyzer
& Collector (ITAC)
Intel MPI Snapshot

Intel MPI Tuner

Cluster N

Scalable - Tune MPI I
?
Intel® Inspector

s bt Srecive i Bandwidth
correctness errors threading Vectorize ondu
: ? ensitive
in your threads and ?

memory!

Memory

Optimize

Thread bandwidth

Intel® Intel® Intel®
VTune™ Amplifier Advisor VTune™ Amplifier

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Parallel

Studio XE

Find & Debug Memory & Threading Errors

Intel® Inspector — Memory & Thread Debugger

Debugger Breakpoints
Correctness Tools Increase ROI By 12%-21% acarw —

=Pl @ Mismatched allocation/dealld
P2 @ Memory leak

View Source
Edit Source

53 Copy to Clipboard
Explain Problem

= Errors found earlier are less expensive to fix

Invalid memory access

= Several studies, ROI% varies, but earlier is cheaper Invalid memory access

P4 & Memory growth Create Problem Report...

Diagnosing Some Errors Can Take Months s & My ot
= Races & deadlocks not easily reproduced Part of jniel® Parallol Studio

= Memory errors can be hard to find without a tool
Intel® Inspector dramatically sped up

Debugger Integration Speeds Diagnosis our ability to track down difficult to
_) isolate threading errors before our
= Breakpoint set just before the problem packages are released to the field.

» Examine variables & threads with the debugger Peter von Kaenel, Director,

Software Development,

Diagnose in hours instead of months .
Harmonic Inc.

1 Cost Factors — Square Project Analysis
CERT: U.S. Computer Emergency Readiness Team, and Carnegie Mellon CyLab I .
NIST: National Institute of Standards & Technology : Square Project Results hﬂp.-ﬂlﬂlﬂLMmel'_‘XE

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Debug Memory & Threading Errors

Intel® Inspector

T‘F;‘ Detect Memory Problems

Find and eliminate errors ® Target]| Anaysc Type] [Cotoctiontog

= Memory leaks, invalid access... AT — T—r

= Races & deadlocks T S |
= C, C++, C#, F# and Fortran (or a mix) - e
Slmpl e, Rell able, ACCU rate ESC{';W" fi::i:d_fix_memory_errors... operator() find_and_fix memory_errors

NO SpeCial recompiles igf o lccal_;nbcx[i]=0j-’;‘,’;emc;}" E;r;r: z‘;;cl‘ared ;n ;,] - ; E
. . 168 for (int y = r.begin(); y != r.end(); ++y) { 'loca
Use any build, any compiler’ — , ,
]) Clicking an error instantly displays source
Analyzes dynamically generated or linked code code snippets and the call stack
Inspects 3™ party libraries without source
Productive user interface + debugger integration

Command line for automated regression analysis

Intel Inspector XE 2016

Modules

Fits your existing
process

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® Inspector dynamic analysis

Data Collection Techniques

Inspector tracks all memory allocations and threading APIs
using a binary instrumentation tool called Pin

= Dynamic instrumentation system provided by Intel (http://www.pintool.org)
» Injected code used for observing the behaviour of the program

= Source modification/recompilation is not needad

Application

Operating [Thread Checking
Spystemg + Memory Checking ‘ Results

Pin

= OS has to be in the support list

= One process is analysed at a time

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Recommended Methodology

One-time / Optional

s

Choose/Create Configure
project project

Run 1 Configure §
dynamic dynamic

- Launch analysis in
2 Rﬁ&‘;’:ﬁm conjunction with debugger to
pp stop at problem(s) of interest

*

Collect result

Choose
problem

v

Investigate result

Interpret Examine
result data/ application
Resolve issue state

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory problem Analysis

Analyzed as software runs
» Data (workload) -driven execution
* Program can be single or multi-threaded
» Diagnostics reported incrementally as they occur

Includes monitoring of:
* Memory allocation and allocating functions
* Memory deallocation and deallocating functions
* Memory leak reporting
* Inconsistent memory API| usage

Analysis scope
* Native code only: C, C++, Fortran
+ Code path must be executed to be analyzed
» Workload size affects ability to detect a problem

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory problems

Memory Ieak) // Memory leak
* a block of memory is allocated
* never deallocated char *pStr = (char*) malloc(512);
* not reachable (there is no pointer available return;
to deallocate the block)
» Severity level = (Error)
Memory nOt deallocated // Memory not deallocated
* a block of memory is allocated static char *pStr = malloc(512);
* never deallocated return;
« still reachable at application exit (there is a
pointer available to deallocate the block).
» Severity level = (Warning)
Memory growth // Memory gl"OWth
* a block of memory is allocated // Start measuring growth
» not deallocated, within a specific time static char *pStr = malloc(512);
segment during application execution. M S R LTl ek

hd CVE evel = (vyvarning

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Threading problem Analysis

Analyzed as software runs
» Data (workload) -driven execution
* Program needs to be multi-threaded
» Diagnostics reported incrementally as they occur

Includes monitoring of:
* Thread and Sync APIs used
» Thread execution order
» Scheduler impacts results
* Memory accesses between threads

Analysis scope
* Native code: C, C++, Fortran
* Managed or mixed code: C# (.NET 2.0 to 3.5, .NET 4.0 with limitations)
* Code path must be executed to be analyzed
* Workload size doesn’t affect ability to detect a problem

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Race Conditions Are Difficult to Diagnose

They only occur occasionally and are difficult to reproduce

Correct Incorrect

s s | |l st | ez || 2t
0 0
Read count €« 0 Read count €« 0
Increment 0 Read count € 0
Write count 4 1 Increment 0
Read count € 1 Increment 0
Increment 1 Write count > 1
Write count =2 2 Write count =2 1

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Productive User Interface Saves Time

Intel® Inspector

Intel Inspector XE 2016

@ Detect Memory Problems Filters Iet yOU

@ Target” “ Analysis Type|| B2 Collection Log‘ fOCUS On a
Select a Problems Fitters module, or

- .
problem Ix |® |1y s error type, or
just the new

Severity

#HP2 @ Memory leak find_and_fix_memory_... P Deferred ~ing 1item(s)

?
oP1 % Mismatched allocation/deallocation find_and_fix memory_... ™ Confirmed (Error 3 item(s)
se ?
#HP3 @ Invalid memory access find_and_fix_ memory_... Re New fi. Type
EP4 & Memory not deallocated api.cpp; mlock.c; util.c... Re New fi. b Invalid memory ac. 1 item(s) errors Or' -t
Memory not deallocated video.cpp:82 Re New fi. Memory leak 1 item(s)
Memory not deallocated util.cpp:163 R New fi. Memeory not deallocated . ~(5)
Memory not deallocated api.cpp:218 Re New fi. Mismatched allocation/dealloc... 1 item(sy
Memory not deallocated mlock.c:347 Re New th. — ! Problem States:
api.cpp 1item(s) 1
| PP _ New, Not Fixed,
Code 01 1of4 b Al Code Locations: Mismatched allocation/deallocation 2 Fixed, Confirmed,
Snippets Description Source ‘Function Module Object Size | Offset | Not a problem
’
. Mismatched deallocation site find_and_fix_memory_errors.cpp:175 operator() find_and_fix memory_errors.exe
dlsplayed 173 drawing->put_pixel(c); 'S S Deferred_’
for } , _ . Regression
175 free (drawing); //Memory Error: use delete instead of free
Selected 176 //delete drawing;
177 }
prObIem Allocation site find_and_fix_ memory_errors.cpp:170 operator() find_and_fix_ memory_errors.exe
168 for (int y = r.begin(); y != r.end(); +ty) {
169 {
170 drawing_area * drawing = new drawing_area(startx, totaly-y, st
171 for (int x = startx ; X < sStopx; X++) {
172 color_t c = render one_pixel (X, y, local mbox, serial, st||tbb _debug.dll!local wa

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Double Click for Source & Call Stack

Intel® Inspector

(—ﬁ Mismatched allocation/deallocation Intel Inspector XE 2016

& Target Analysis Type || B2 Collection Log * Summary m
Mismatched deallocation site - Thread thread_video (4596) (find_and_fix_memory_errors.exeloperator() - find_and_fix_memory_errors.cp... ? =

find_and_fix_memory_errors.cpp [RNEEEEN RGBT R D0 E LGN EIEET [9)] Call Stack

Source code
locations
displayed for
selected
problem

find_and_fix_memory_errors.exeloperator() - fi

for (unsigned int i=0;i<=(mboxsize/(sizeof(unsigned int)));i++)
local_mbox([i]=0; //Memory Error: C declared arrays go from

find_and_fix_memory_errors.exelrun_body - p3g
find_and_fix_memory_errors.exelexecute<clasg

find_and_fix memory_errors.exelexecute - ~rg

for (int y = r.begin(); vy '= r.end(); ++vy) {
{

tbb_debug.dll!local_wait_for_all - custom_sc P

tbb_debug.dll!local_spawn_root_and_wait - sc
drawing_area * drawing = new drawing_area(startx, totaly-

for (int x = startx ; x < Stopx; X++) {
color_t c = render one_pixel (x, y, local_mbox, serij
drawing->put_pixel(c);

tbb_debug.dll!spawn_root_and_wait - schedul
find_and_fix_memory_errors.exelspawn_root_a Ca I I
find_and_fix_memory_errors.exelrun - parallel Stack

d_and_fix_memory_errors.cpp 0 ‘ Call Stack

170 drawing_area * drawing =

new drawing_area(startx, totaly find_and_fix_memory_errors.exeloperator() - fi
171 for (int x = startx ; X < Stopx; Xx++) { find_and_fix_memory_errors.exe!run_body - p
172 color t c = render one pixel (x, y, local mbox, seridSlBfind_and_fix_memory_errors.exelexecute<clas
173 drawing->put_pixel(c); find_and_fix_memory_errors.exelexecute - par.
174 } tbb_debug.dll!local_wait_for_all - custom_sch
175 free(drawing); //Memory Error: use delete instead of fr4 tbb_debug.dllllocal_spawn_root_and_wait - s
176 //delete drawing: tbb debua.dll!spawn root and wait - schedul

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Quickly track down your Fortran issues!

IDa @ Type Sources Modules Object Size | State
=P1 @ Memory leak nqueens_memory.f80 memory_issues.exe 64 Re New
41 1of1 [|Al
Description Source lFunction IModuIe Object Size | Offset | Variable
Allocation site nqueens_memory.f90:50 NQUEENS memory_issues.exe 64
48 '$ nthreads = omp_get_max_threads() memory_issues.exe!NQUEENS - nqueens
49 memory_issues.exe!main
50 allocate (correct_solution(16)) memory_issues.exe!_tmainCRTStartup
51 correct_solutien = (/ 1,0,0,1,2,10,4,40,92,352,727 47] 10f318 b

Description Source | Function Module Variable

€ Locate Deadlocks and Data Races Read nqueens_threading.f90:117 NQUEENS_ip_SETQUEEN threading_issues.exe
—~ - - 115 ! Recursive routine to set a queen on the board threading_issues.exe!NQUEENS_ip SET
% Target Analysis Type || s Collection Log m 116 threading_issues.exe!NQUEENS ip SET
117 recursive subroutine setQueen (queens, row, col) threading_issues.exe!NQUEENS_ip SET
118 implicit none threading_issues.exe!NQUEENS_ip SET
IDa @ Type Sources Modules State 119 integer, intent(inout) :: queens(:) threading issues.exe!NQUEENS ip SET

EP1 @ Data race nqueens_threading.f30 threading_issues.exe Re Ne' Write nqueens_threading.f90:117 NQUEENS_ip_SETQUEEN threading_issues.exe
#P2 (%] Data race nqueens_threading.f90 threading_issues.exe R Ne 115 ! Recursive routine to set a gueen on the board threading_issues.exe!NQUEENS ip SET
#HP3 @ Data race nqueens_threading.f90 threading_issues.exe ReNe 116 threading issues.exe:NQUEENS ip SEI
117 recursive subroutine setQueen (queens, row, ccl) threading_issues.exe!NQUEENS ip SET
118 implicit none threading_issues.exe!NQUEENS_ip SET
119 integer, intent(inout) :: queens(:) threading_issues.exe!NQUEENS_ip SET

ptimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Easy Problem Management

Quickly see new problems and regressions

______ State | Descripion

New Detected by this run
Not Fixed Previously seen error detected by this run
Not a Problem Set by user (tool will not change)
Confirmed Set by user (tool will not change)
Fixed Set by user (tool will change)
Regression Error detected with previous state of “Fixed”

7 View Source
¥ Detect Memory Problems Intel Inspector XE 2016 =
Edit Source
@ Target Analysis Type || 2 Collection Log 53 Copy to Clipboard
Problems ? Explain Problem

Create Problem Report..

Type Sources State Modules

Mismatched allocation/deallocation find_and_fix_memorjr XS . F> Confirmed find_and... ! Debug This Problem (Not fixed
Memory leak find_and_fix_memory_error. .. P> Deferred find_and... Change State Confirmed b
Invalid memory access find_and_fix_memory_errors... ’ find_and ... Merge States...

Fixed

Memory not deallocated api.cpp; mlock.c; util.cpp; vi...

Not a problemr
Deferred

Optimization Notice
Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Filtering - Focus on What's Important

Example: See only the errors in one source file

Before — All Errors

roblen 7 ‘ Filters ?
ID @& Type Sources State Severity o
EP1 @ Mismatched alloc... find_an... R New Error 55 item(s) | |
Mismatched alloc... find_an... Re New Warning 1 item(s}
EP2 @ Mismatched alloc... api.cpp R New Type |
Mismatched alloc... api.cpp R New Invalid memory access 41 item(s) i
EP3 @ Memory leak api.cpp P Confirmed Memory leak 1 item(s)
Memory leak api.cpp P Confirmed Memory not deallocated 11 item(s)
EP4 @ Mismatched alloc... video.c ... P> Not fixed Mismatched allocation/dealloc... 2 item(s)
Mismatched alloc... video.c... P Not fixed —
EPS @ o o T i api.cop 21 item(s)
(1) Filter — Show Only « find_and_fix memory_errors.cpp 3item(s) |
Ll one source file g [\ oty
— i video.cpp 21 item(s) «

Tip: Set the “Investigated”

After — Only errors from one source file

Da &
=Pl @
P2 @
#P3 @

Type Sources State
Mismatche... find_an... R New
Memory leak find_an... P Confirmed
Invalid me... find_an.. P Deferred

(2) Error count drops

Severity b
Error 3item(s)
Type

Invalid memony access 1 item(s)
Memory leak 1litem(s) |=
Mismatched allocation/dealloc... 1 item(s)
Source Al
find_and_fix_memory_errors.cpp 3item(s)
State N
Confirmed 1 item(s)
Deferred 1 item(s)
New 1 item(s)
Suppressed ~

filter to “Not investigated” while investigating problems.

This removes from view the problems you are done with, leaving only the ones left to investigate.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Incrementally Diagnose Memory Growth

Memory Used by Analysis Tool and Target Application

I nte |® | n S pecto r Last rfco;dii memory usage before collection completed: 211 MB

As your app is running... w
Memory usage graph | s
plots memory growth d 35 Min

Type Sources Modules Object Size State

Select a Cause Of Memory growth gdiplus.dIl:0x47240 gdiplus.dil 40960 R New

Memory growth find_and_fix_memory_errors.cpp:163 find_and_fix_memory_errors.exe * Not fixed

m e m O ry g rowth Memory growth find_and_fix memory_errors.cpp:163 find_and_fix memory_errors.exe 1802160 P> Not fixed
30036 P Not fixed

Memory growth find_and_fix_memory_errors.cpp:163 find_and_fix_ memory_errors.exe
Memory growth find_and_fix_memory_errors.cpp:163 find_and_fix memory_errors.exe 1621944 P> Not fixed

41

See th e COd e S n i p pet Description Source Funon Module N Object Size Offset

Allocation site find_and_fix_memory_errors.cpp:163 operator() find_and_fix_memory_errors.exe 90108

& Ca | I Sta Ck 161 unsigned int serial=l; find and fix memory errors.exe

162 unsigned int mboxsize = sizeof(unsigned int)*(max_objectid() +||find_and fix memory_ errors.exe
163 unsigned int * local mbox = (unsigned int *) malloc(mboxsize); nd_and fix memory_errors.exs
164 find and fix mem
165 for (unsigned int i=0;i<=(mboxsize/(sizeof (unsigned int)));i++|[tbb debug.dll!local wait for g

_Errors.exq

e e Speed diagnosis of difficult to find heap errors

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Automate Regression Analysis

Command Line Interface
inspxe-cl is the command line:

— windows: C:\Program Files\Intel\Inspector XE \bin[32]64]\inspxe-
cl.exe

— Linux: /opt/intel/inspector xe/bin[32]64]/inspxe-cl

(A8

Configure Analysis Type Intel Inspector XE 2016

Help:

lnpre—Cl _help @ o 220x Detect Leaks
. —g [10:-404 [Detect Memory Problem] H u
()
1 1 : 20x-80x Locate Memory Problems il ”
S et u p comman d | Ine Wlth G U I Hemen frernsbe ¥ Analysis Time Overhead ’ Memory Overhead
- Detect Memory Problems Copy
[Command Line...] Medium scope memory error analysis type. Increases the load on the system

and the time and resources required to perform analysis. Press F1 for more

Command examples: o -
Detect memory leaks upol
1.inspxe-cl -collect-list -
2. 1nspxe-cl -collect ti2 -- MyApp.exe

3. inspxe-cl —-report problems

S Send results file to developer to analyze with the Ul

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Compare results and see what has changed

|deal for regression testing

@ Compare Results INTEI. INSPECTUR 20]7
Choose two results of the same analysis type
Compare two results to identify issues that exist in one but not the other, or that still exist in both.

Close
Result 1:
C:\samples\tachyon_insp_xe\vc10\My Inspector Results - find_and_fix_threading_errors\r000ti2\r000ti2.inspxe

Result 2:
C:\samples\tachyon_insp_xe\vc10\My Inspector Results - find_and_fix_threading_errors\r001ti2\r001ti2.inspxe

@ Compared Result

* Analysis Type || o Collection Log | :: [E* LT ENY
Problems @
ID a @& Type Sources Modules State

+P1 @ Data race find_and_fix_threading_errors.cpp Afind_and_fix_threading_errors.exe ‘ Both
#HPp2 @ Data race winvideo.h find_and_fix_threading_errors.exe Both

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Find problems quicker!

Interactive debugging support
3 debugging modes

(e Configure Analysis Type INTEL INSPECTOR 2017
A Analysis Type Supported '
i Qsor 1. Analyze without
- 10x-40x Detect Deadlocks
&‘ —2@1 2001 Hﬂ debugger
T AT 40x-160x Locate Deadlocks and Data Races l““" 2) E n a b I e d e b u g g e r'

Analysis Time Overhead Memory Overhead

Detect Deadlocks and Data Races Copy When problem

Medium scope threading error analysis type. Increases the load on the system and the time and resources required
to perform analysis. Press F1 for more details.

detected

3. Start analysis
when a debug
breakpoint is hit.

[] Terminate on deadlock
Stack frame depth: | 1 v
(®) Analyze without debugger
Run an analysis and report all detected problems. Use to view correctness issues without stopping in the debugger

() Enable debugger when problem detected

Run an analysis under the debugger and stop every time a problem is detected. Use to allow investigation of every

(O Select analysis start location with debugger

Run target application under the debugger with analysis disabled until you choose to turn on analysis. Before starti

(¥ Details

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Break At Just The Right Time

Intel® Inspector - Memory & Thread Debugger

Memory Errors Threading Errors
bt
Da @ Type Sources Sources Modules
PL @ Mismatched allocation/deallc View Source Data race wnvdeo.h e —
P2 @ Meory leak EHtSantee Data race w!nv!deo.h:27 Edit Source
=P3 % Invalid memory access 23 Copy to Clipboard Datarace winvideo.h:270 23 Copyto Clipboard

Invalid memory access
P4 & Memory growth

Explain Problem Dsiakace wemaden be2g Explain Problem

Create Problem Report... Dstakace Wiridenieies Create Problem Report...

P5 Memory growth Debug This Problem Data race winvideo.h:202 Debug This Problem
P6 Memory growth

Break into the debugger just before the error occurs.
Examine the variables and threads.
Diagnose the problem.

Save time. Find and diagnose errors with less
effort.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intuitive problem solving using debugger
iIntegrations

//! Refresh screen picture
FIbool video::next_frame()

Microsoft Visual Studio* and
GNU gdb* or Intel®

¢ if(!running) return false; Debugger (On Linux*)
2 || g_updates++; // Fast but inaccurate counter. The data race here is beni
if(!threaded) while(loop_once(this));
else if(g_handles[1]) { Problem Details
\S(;Efgi:;f?ﬁg::g](.;j[l]); Source @ Intel Inspector @ Disable Breakpoint F> Re-enable Breakpoints 3
} Data race at data location 0x135dc for threads 16208 and TBB Worker Thread
return true;
Ly Description ‘Source Function Module
[+/Read winvideo.h:270 next_frame find_and_fix_threading_errors.exe
[+ Write winvideo.h:271 next_frame find_and_fix_threading_errors.exe

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

GLICG UV M Compiler Inli... Compiler Opt... Call Stack Breakpoints Output

Work Smarter & Faster

Intel® Inspector - Memory & Thread Debugger

Precise Error Pause/Resume

s X suppress pus%(itt suppress_ threading errors);
:zpek_ { ?nlnltlal1zed_memory_access ! /* Any threading errors here are ignored */
acks =

{

__itt suppress_pop();

mod=a.out, func=update x; /* Any threading errors here are seen */

func=main;

Precise, easy to edit, team shareable. Speed-up analysis by
Choose which stack frame to suppress. limiting its scope.
Eliminate the false, not the real errors. Analyze only during the execution

of the suspected problem.

Find and diagnose errors with less effort.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Productive Memory & Threading Debugger

Intel® Inspector Memory | Threading
Analysis | Analysis

View Context of Problem
Stack
Multiple Contributing Source Locations

Collapse multiple “sightings” to one error
(e.g., memory allocated in a loop, then leaked is 1 error)

Suppression, Filtering, and Workflow Management
Visual Studio® Integration (Windows*)
Command line for automated tests

AN N N N T

Time Line visualization

v
v
v
v
v
v
v
v

Memory Growth during a transaction

AN

Trigger Debugger Breakpoint v

e Easier & Faster Debugging of Memory & Threading

Copyright © 2015, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

Intel Inspector 2017 Features

» Support for Intel® Xeon Phi™ processor (codename: Knights Landing)
« Support for C++11 synchronization primitives during threading analysis

« Variable name detection for threading analysis

« Support for C++17 std::shared _mutex and Windows SRW Locks during
threading analysis

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Variable name detection for threading ana

lysis

peadlocks and Data Race PECTOR 20
pe ollection Log @ Summary
D& Type |Sources Modules State Severity
2P1 Data race find_and_fix_threading_errors.cpp find_and_fix_threading_errors.exe Rt New Error 2item(s)
Data race find_and_fix_threading_errors.cp ... find_and_fix_threading_errors.exe R New Type
Data race find_and_fix_threading_errors.cp ... find_and_fix_threading_errors.exe R New Data race 2 item(s)
Data race find_and_fix_threading_errors.cp ... find_and_fix_threading_errors.exe Re New e —
Data race find_and_fix_threading_errors.cp ... find_and_fix_threading_errors.exe e New find_and._fix_threading_errors.cpp 1 item(s)
P2 Data race winvideo.h find_and_fix_threading_errors.exe R New winvideo.h 1 item(s)
Module
find_and_fix_threading_errors.exe 2 item(s)
State
New 2item(s)
Suppressed
Not suppressed 2 item(s)
Investigated
Not investigated 2 item(s)
41 1of5 D Al
Description Source Function Module Variable & -~
Write find_and_fix_threading_errors.cpp:105 render_one_pixel find_and_fix_threading_errors.exe col::r
103 primary.scene = sscene; find and fix threading_errors.exe!render_one pix BB Worker Thread (12516
104
105 col=trace (sprimary); //Threading Error: col is a glcbal variable
106 //2 ways to fix this threading error
107 /7 1) Make col a local variable
Write find_and_fix_threading_errors.cpp:105 render_one_pixel find_and_fix_threading_errors.exe colr
103 primary.scene = sscene; find_and_fix_threading_errors.exe!render_one_pix
104 find_and_fix threading_errors.exe!render_one_pix
105 col=trace (sprimary); //Threading Error: col is a global variable
106 //2 ways to fix this threading error
107 /7 1) Make col a local variable

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

